

eNOSE calibration

FOR LUNG CANCER DETECTION

Andrea Merlina, Valerio Bruschi

1. Statistics

- 2. Objectives
- 3. Data contextualization
 - 1. Outliers

4. Data Analysis

- a) Intro
- b) LDA
- c) Mahalanobis
- d) PCA-DA
- e) Feature Selection
- f) MLR
- 5. Conclusions

Statistics

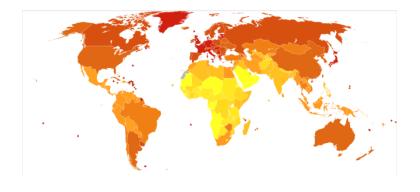
In 2008 approximately 12.7 million cancers were diagnosed In 2010 nearly 7.98 million people died

Cancers account for approximately **13% of deaths**

Most common type:

- lung cancer (1,4 million deaths)
- stomach cancer (740.000)
- liver cancer (700.000)

Invasive cancer are the <u>leading cause of death</u> in the developed world and the second leading in the developing world



1. Statistics

2. <u>Objectives</u>

- 3. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Objectives

Composition of the breath of patients with lung cancer <u>contains information that could be used to</u> <u>detect the disease</u>

Breath samples were collected and analyzed by two electronic noses

Two goals:

 Instrument calibration using a set of key compounds

distinguish healthy and ill patience

Quality assurance of eNose data in the medical setting

Mapping between instruments through the calculation of a **model**

- 1. Statistics
- 2. Objectives
- 3. Data contextualization
 - 1. Outliers

4. Data Analysis

- a) Intro
- b) LDA
- c) Mahalanobis
- d) PCA-DA
- e) Feature Selection
- f) MLR
- 5. Conclusions

Data contextualization

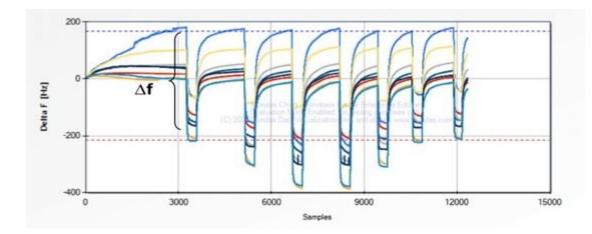
Two datasets obtained as measures from two electronic noses

- Cyranose
- ROTV

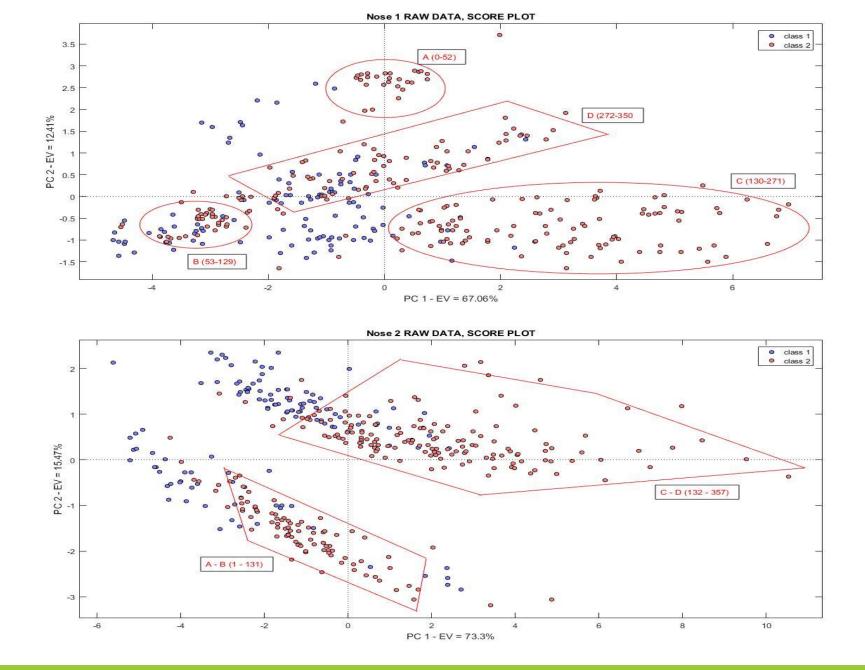
In a medical environment

≈ 350 samples/dataset

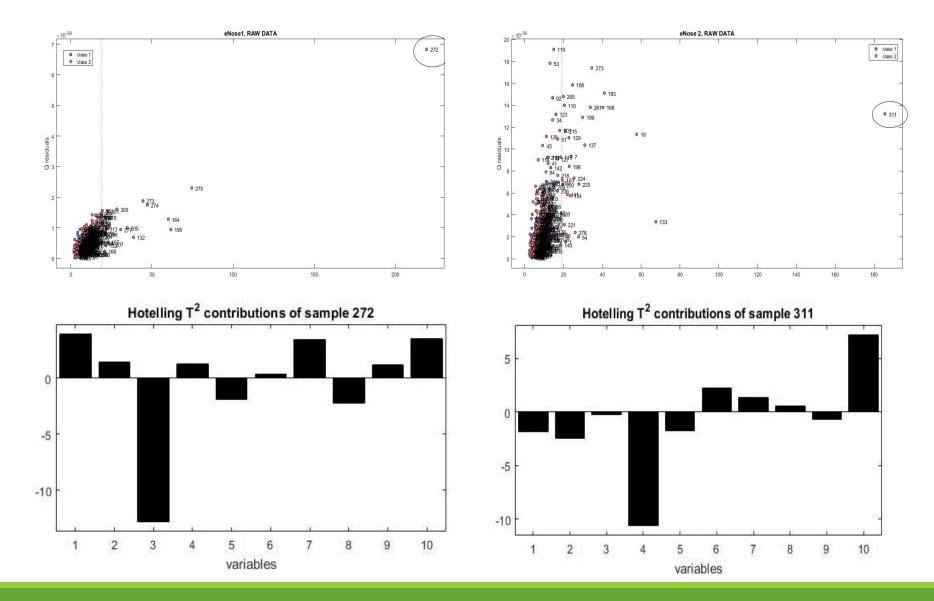
10 features + 10 gas non-selective sensors







Outliers



- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers

4. Data Analysis

- a) Intro
- b) LDA
- c) Mahalanobis
- d) PCA-DA
- e) Feature Selection
- f) MLR
- 5. Conclusions

Data Analysis

Using raw data to develop an inter instrumental model:

eNose 1 as traning and eNose 2 as test results:

- LDA: everybody is classified as ill
- PCA DA: everybody is classified as healthy
- Mahalanobis:

RAW DATA

	Classification			Classification
es		Class #1	Class #2	Error (%)
Classes	Class #1	45 74		62,18
U	Class #2	123 115		51,68
		Accuracy		44,82

PREPROCESSING

CLASSIFICATION

- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) <u>Intro</u>
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Data Analysis: Intro

Hypotesis:

Normalization of a trunk using a **baseline** of:

- 1 sample
- 5 samples (about 15%* error for class 1)
- 10 samples (about 15%* error for class 1)
- entire chunck (25%*)

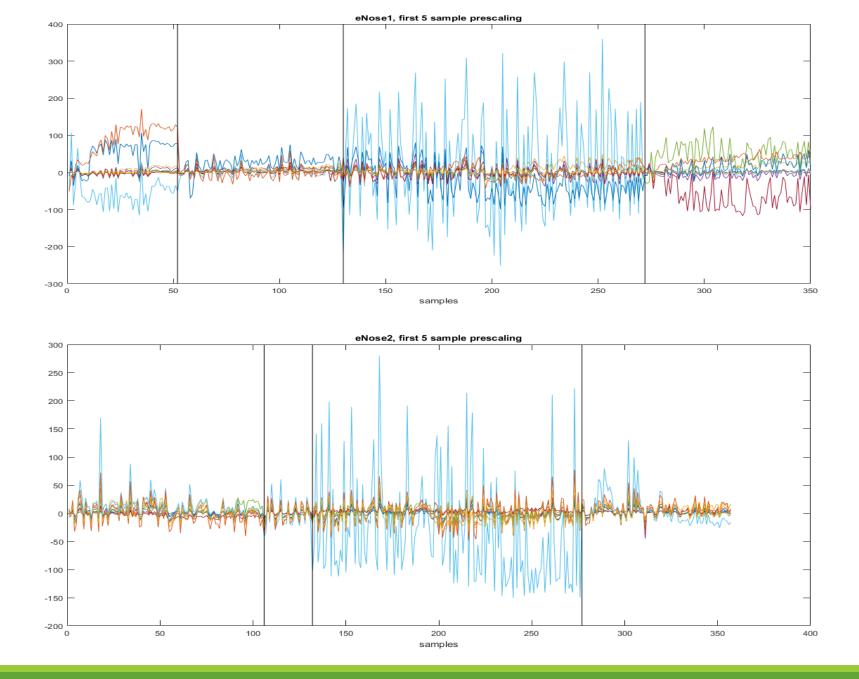
In order to <u>minimize memory effects</u> and <u>maximize reproducibility</u>

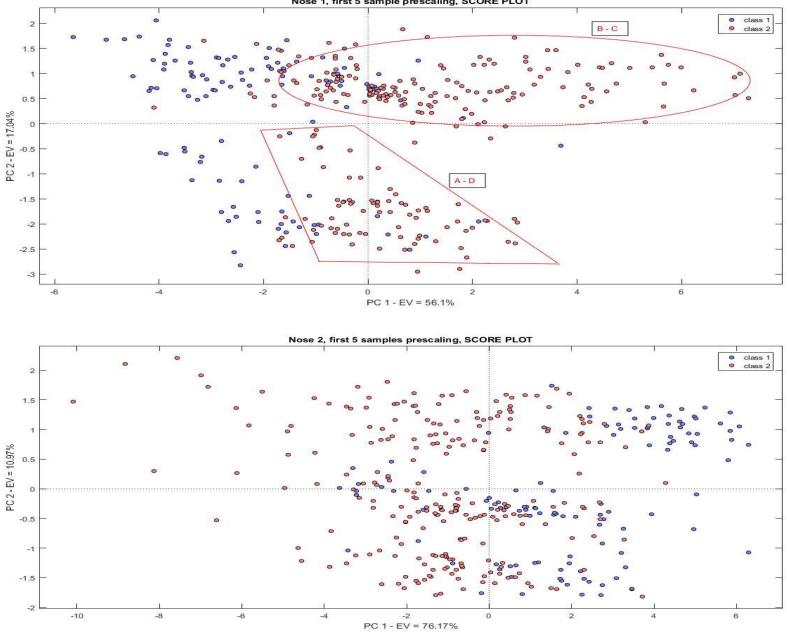
• Max Accuracy

- Min False Negative
- Min number of samples

Best tradeoff performances/easy of calibration

* With our best classification method





Nose 1, first 5 sample prescaling, SCORE PLOT

- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) <u>Intro</u>
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Data Analysis: Intro

Linear discrimination

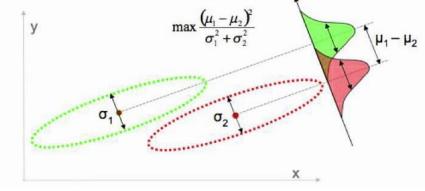
Mahalanobis

Components discrimination

- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) <u>LDA</u>
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Data Analysis: LDA

- LDA: pick a new dimension that gives:
 - maximum separation between means of projected classes
 - minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrices



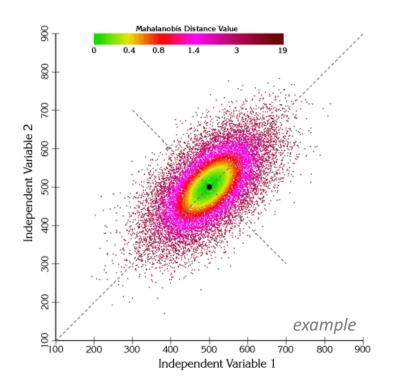
Resulting confusion matrix:

	Classification			Classification
es		Class #1 Class #2		Error (%)
Classes	Class #1	Class #1 89 29		24,58
σ	Class #2	99 139		41,60
		Accuracy		64,04

- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) <u>Mahalanobis</u>
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Data Analysis: Mahalanobis

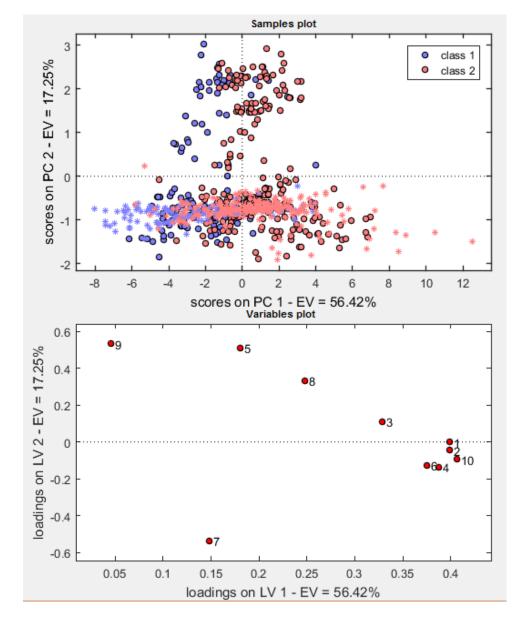
- Sample points are distributed about the center of mass in a ellipsoidal manner.
- •the probability of the test point to belong to the set depends not only on the **distance** from the center of mass, but also on the **direction**.
- •Result: everybody is classified as healthy



1. Statistics

- 2. Objectives
- 3. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) <u>PCA-DA</u>
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

Data Analysis: PCA - DA



- 1. Statistics
- 2. Objectives
- 3. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) <u>PCA-DA</u>
 - e) Feature Selection
 - f) MLR
- 5. Conclusions

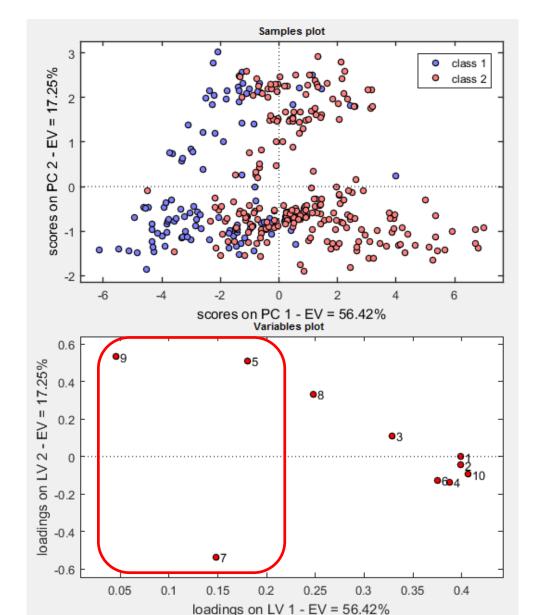
Data Analysis: PCA - DA

- Optimum solution
- Maximum accuracy
- Minimum False Negative

	Cla	assificati	Classification	
es		Class #1 Class #2		Error (%)
Classes	Class #1	100	18	15,25
Ū	Class #2	59 179		24,79
		Accuracy		78,37

- 1. Statistics
- 2. Objectives
- 3. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) <u>Feature Selection</u>
 - f) MLR
- 5. Conclusions

Data Analysis: Feature Selection Based on loadings of PCA



Statistics

- Objectives
- Data contextualization
 - Outliers

Data Analysis

- Intro
- LDA
- Mahalanobis
- PCA-DA
- **Feature Selection**
- MLR
- Conclusions

Data Analysis: Feature Selection Based on loadings of PCA

Close to resul without featu selection !!

e to results ut feature	PCA - DA		Cla	assificati	Classification	
ut feature Class #2 65 173 27,31		es		Class #1	Class #2	Error (%)
<i>ut feature</i> Class #2 65 173 27,31	to results	ass	Class #1	101	17	14,41
		Ū	Class #2	65	173	27,31
election !! Accuracy 76,97	-			Accuracy		76,97

Mahalanobis

	Cla	Classification		
es		Class #1	Class #2	Error (%)
Classes	Class #1	32	86	72,88
Ū	Class #2	22 216		9,24
		Accuracy		69,66

LDA

4		Cla	assificati	Classification	
	es		Class #1	Class #2	Error (%)
	ass	Class #1	90	28	23,73
	Ū	Class #2	95	143	39,92
			Accuracy		65,45

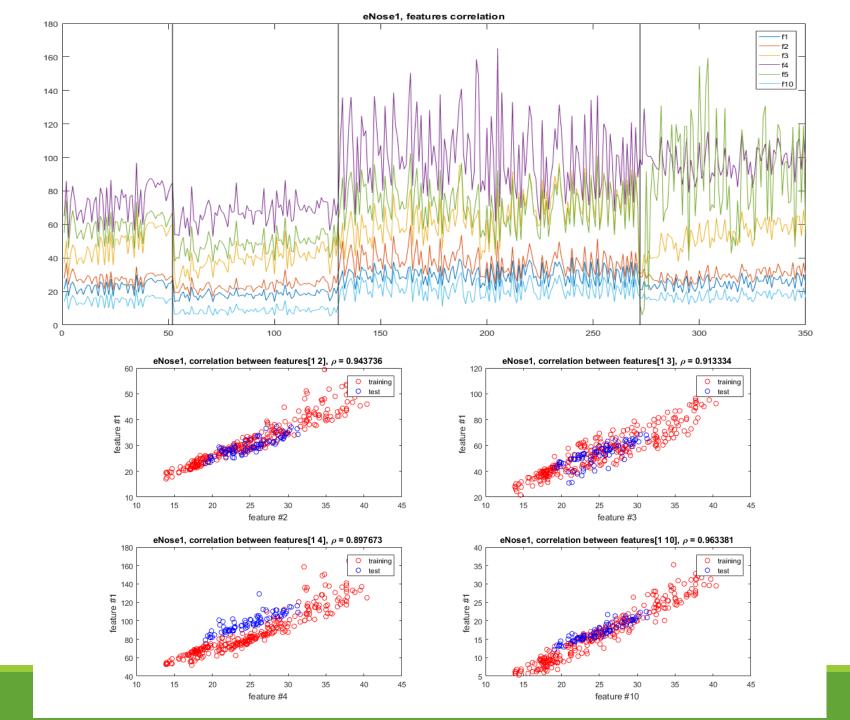
- 1. Statistics
- 2. Objectives
- 3. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) <u>MLR</u>
- 5. Conclusions

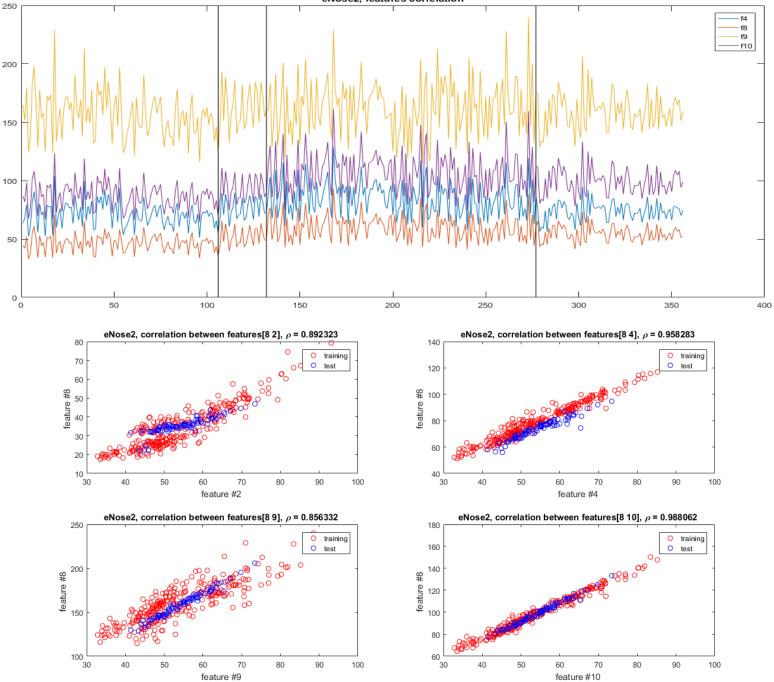
Data Analysis: MLR (intro)

We noticed correlation between features on the same eNose.

Can we find a regression model in order to reduce the number of features (sensors) used in the experiment?

Is the model reliable during time?



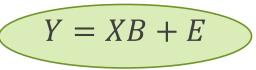


eNose2, features correlation

- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) <u>MLR</u>
- 5. Conclusions

Data Analysis: MLR

Multiple linear regression attempts to model the relationship between variables by fitting a **linear** equation to observed data.



 Dataset was divided in training and test sets in a temporal way.

(first 3 days as training, the last one as testing)

$$B = X^+ \cdot Y$$

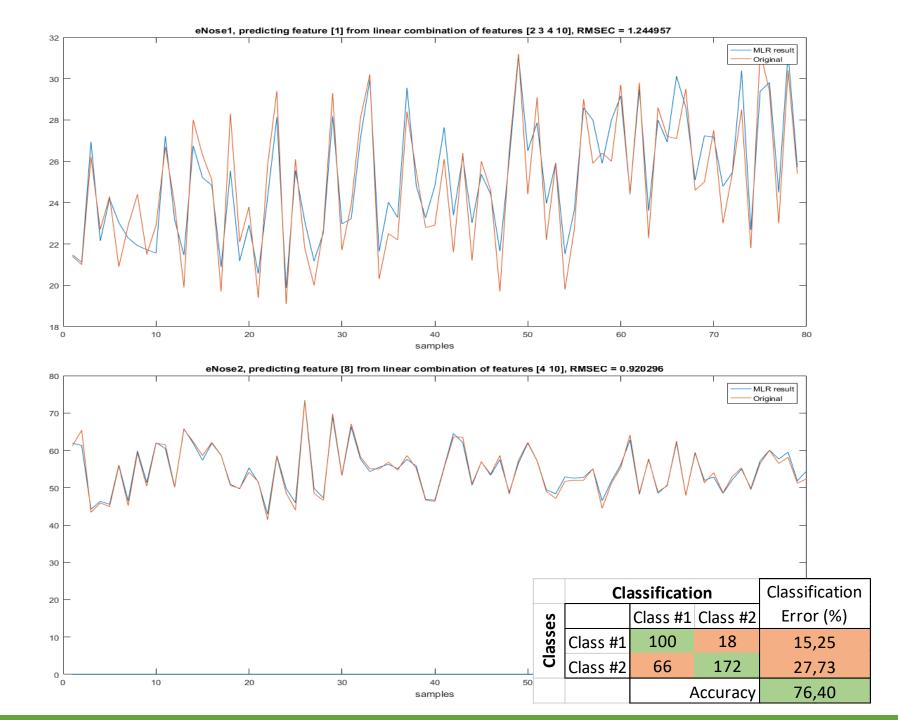
RMSECV was computed for each feature predicted

$$RMSECV = \sqrt{\frac{PRESS}{N}}$$

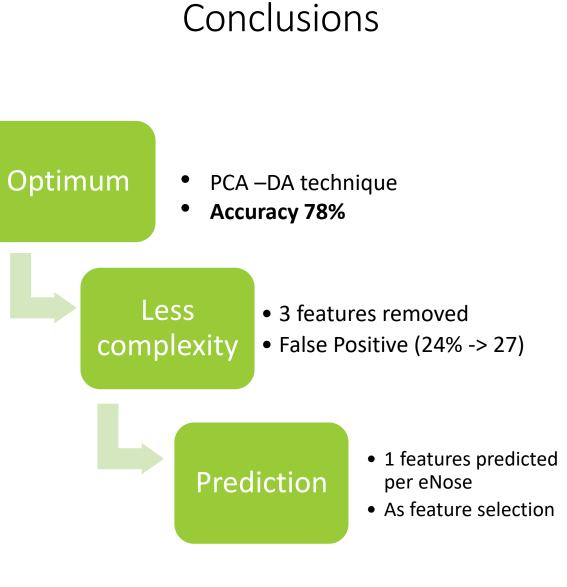
with $PRESS = \sum_{i} (y_{i}^{LS} - y_{i})^{2}$

MLR hypothesis: $e_{\gamma} \approx e_{\chi}$.

Regression less robust



- 1. Statistics
- 2. Objectives
- B. Data contextualization
 - 1. Outliers
- 4. Data Analysis
 - a) Intro
 - b) LDA
 - c) Mahalanobis
 - d) PCA-DA
 - e) Feature Selection
 - f) MLR
- 5. Conclusions



Thanks for the attention